Power Gating Structure for Reversible Programmable Logic Array
نویسنده
چکیده
Throughout the world, the numbers of researchers or hardware designer struggle for the reducing of power dissipation in low power VLSI systems. This paper presented an idea of using the power gating structure for reducing the sub threshold leakage in the reversible system. This concept presented in the paper is entirely new and presented in the literature of reversible logics. By using the reversible logics for the digital systems, the energy can be saved up to the gate level implementation. But at the physical level designing of the reversible logics by the modern CMOS technology the heat or energy is dissipated due the sub-threshold leakage at the time of inactivity or standby mode. The Reversible Programming logic array (RPLA) is one of the important parts of the low power industrial applications and in this paper the physical design of the RPLA is presented by using the sleep transistor and the results is shown with the help of TINAPRO software. The results for the proposed design is also compare with the CMOS design and shown that of 40.8% of energy saving. The Transient response is also produces in the paper for the switching activity and showing that the proposed design is much better that the modern CMOS design of the RPLA.
منابع مشابه
Design and Implementation of Field Programmable Gate Array Based Baseband Processor for Passive Radio Frequency Identification Tag (TECHNICAL NOTE)
In this paper, an Ultra High Frequency (UHF) base band processor for a passive tag is presented. It proposes a Radio Frequency Identification (RFID) tag digital base band architecture which is compatible with the EPC C C2/ISO18000-6B protocol. Several design approaches such as clock gating technique, clock strobe design and clock management are used. In order to reduce the area Decimal Matrix C...
متن کاملDSTN (Distributed Sleep Transistor Network) for Low Power Programmable Logic array Design
With the high demand of the portable electronic products, Lowpower design of VLSI circuits & Power dissipation has been recognized as a challenging technology in the recent years. PLA (Programming logic array) is one of the important off shelf part in the industrial application. This paper describes the new design of PLA using power gating structure sleep transistor at circuit level implementat...
متن کاملReversible Programmable Logic Array (RPLA) using Feynman & MUX Gates for Low Power Industrial Applications
This paper present the research work directed towards the design of reversible programmable logic array using very high speed integrated circuit hardware description language (VHDL). Reversible logic circuits have significant importance in bioinformatics, optical information processing, CMOS design etc. In this paper the authors propose the design of new RPLA using Feynman & MUX gate. VHDL base...
متن کاملReversible Programmable Logic Array (RPLA) using Fredkin & Feynman Gates for Industrial Electronics and Applications
In recent years, reversible logic has emerged as a promising computing paradigm having application in low power CMOS, quantum computing, nanotechnology, and optical computing. The classical set of gates such as AND, OR, and EXOR are not reversible. In this paper, the authors have proposed reversible programmable logic array (RPLA) architecture using reversible Fredkin and Feynman gates. The pro...
متن کاملA Reversible Programmable Logic Array (RPLA) Using Fredkin and Feynman Gates for Industrial Electronics and Applications
In recent years, reversible logic has emerged as a promising computing paradigm having application in low power CMOS, quantum computing, nanotechnology, and optical computing. The classical set of gates such as AND, OR, and EXOR are not reversible. In this paper, the authors have proposed reversible programmable logic array (RPLA) architecture using reversible Fredkin and Feynman gates. The pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.02915 شماره
صفحات -
تاریخ انتشار 2015